News Feeds

The Human GLP-1 Analogs Liraglutide and Semaglutide: Absence of Histopathological Effects on the Pancreas in Nonhuman Primates

Diabetes.org Current Issue - Tue, 06/24/2014 - 19:04

Increased pancreas mass and glucagon-positive adenomas have been suggested to be a risk associated with sitagliptin or exenatide therapy in humans. Novo Nordisk has conducted extensive toxicology studies, including data on pancreas weight and histology, in Cynomolgus monkeys dosed with two different human glucagon-like peptide-1 (GLP-1) receptor agonists. In a 52-week study with liraglutide, a dose-related increase in absolute pancreas weight was observed in female monkeys only. Such dose-related increase was not found in studies of 4, 13, or 87 weeks’ duration. No treatment-related histopathological abnormalities were observed in any of the studies. Quantitative histology of the pancreas from the 52-week study showed an increase in the exocrine cell mass in liraglutide-dosed animals, with normal composition of endocrine and exocrine cellular compartments. Proliferation rate of the exocrine tissue was low and comparable between groups. Endocrine cell mass and proliferation rates were unaltered by liraglutide treatment. Semaglutide showed no increase in pancreas weight and no treatment-related histopathological findings in the pancreas after 13 or 52 weeks’ dosing. Overall, results in 138 nonhuman primates showed no histopathological changes in the pancreas associated with liraglutide or semaglutide, two structurally different GLP-1 receptor agonists.

Categories: News Feeds

Glucose Sensing in the Peritoneal Space Offers Faster Kinetics Than Sensing in the Subcutaneous Space

Diabetes.org Current Issue - Tue, 06/24/2014 - 19:04

The paramount goal in the treatment of type 1 diabetes is the maintenance of normoglycemia. Continuous glucose monitoring (CGM) technologies enable frequent sensing of glucose to inform exogenous insulin delivery timing and dosages. The most commonly available CGMs are limited by the physiology of the subcutaneous space in which they reside. The very same advantages of this minimally invasive approach are disadvantages with respect to speed. Because subcutaneous blood flow is sensitive to local fluctuations (e.g., temperature, mechanical pressure), subcutaneous sensing can be slow and variable. We propose the use of a more central, physiologically stable body space for CGM: the intraperitoneal space. We compared the temporal response characteristics of simultaneously placed subcutaneous and intraperitoneal sensors during intravenous glucose tolerance tests in eight swine. Using compartmental modeling based on simultaneous intravenous sensing, blood draws, and intraarterial sensing, we found that intraperitoneal kinetics were more than twice as fast as subcutaneous kinetics (mean time constant of 5.6 min for intraperitoneal vs. 12.4 min for subcutaneous). Combined with the known faster kinetics of intraperitoneal insulin delivery over subcutaneous delivery, our findings suggest that artificial pancreas technologies may be optimized by sensing glucose and delivering insulin in the intraperitoneal space.

Categories: News Feeds

Risk of Type 1 Diabetes Progression in Islet Autoantibody-Positive Children Can Be Further Stratified Using Expression Patterns of Multiple Genes Implicated in Peripheral Blood Lymphocyte Activation and Function

Diabetes.org Current Issue - Tue, 06/24/2014 - 19:04

There is tremendous scientific and clinical value to further improving the predictive power of autoantibodies because autoantibody-positive (AbP) children have heterogeneous rates of progression to clinical diabetes. This study explored the potential of gene expression profiles as biomarkers for risk stratification among 104 AbP subjects from the Diabetes Autoimmunity Study in the Young (DAISY) using a discovery data set based on microarray and a validation data set based on real-time RT-PCR. The microarray data identified 454 candidate genes with expression levels associated with various type 1 diabetes (T1D) progression rates. RT-PCR analyses of the top-27 candidate genes confirmed 5 genes (BACH2, IGLL3, EIF3A, CDC20, and TXNDC5) associated with differential progression and implicated in lymphocyte activation and function. Multivariate analyses of these five genes in the discovery and validation data sets identified and confirmed four multigene models (BI, ICE, BICE, and BITE, with each letter representing a gene) that consistently stratify high- and low-risk subsets of AbP subjects with hazard ratios >6 (P < 0.01). The results suggest that these genes may be involved in T1D pathogenesis and potentially serve as excellent gene expression biomarkers to predict the risk of progression to clinical diabetes for AbP subjects.

Categories: News Feeds

BACH2, a Candidate Risk Gene for Type 1 Diabetes, Regulates Apoptosis in Pancreatic {beta}-Cells via JNK1 Modulation and Crosstalk With the Candidate Gene PTPN2

Diabetes.org Current Issue - Tue, 06/24/2014 - 19:04

Type 1 diabetes is a chronic autoimmune disease characterized by specific destruction of pancreatic β-cells by the immune system. Linkage and genome-wide association studies have identified more than 50 loci across the human genome associated with risk of type 1 diabetes. Recently, basic leucine zipper transcription factor 2 (BACH2) has been associated with genetic risk to develop type 1 diabetes, in an effect ascribed to the immune system. We evaluated whether BACH2 may also play a role in immune-mediated pancreatic β-cell apoptosis. BACH2 inhibition exacerbated cytokine-induced β-cell apoptosis in human and rodent β-cells by the mitochondrial pathway of cell death, whereas BACH2 overexpression had protective effects. BACH2 silencing and exposure to proinflammatory cytokines increased phosphorylation of the proapoptotic protein JNK1 by upregulation of mitogen-activated protein kinase kinase 7 (MKK7) and downregulation of PTPN2. JNK1 increased phosphorylation of the proapoptotic protein BIM, and both JNK1 and BIM knockdown protected β-cells against cytokine-induced apoptosis in BACH2-silenced cells. The present findings suggest that the type 1 diabetes candidate gene BACH2 regulates proinflammatory cytokine–induced apoptotic pathways in pancreatic β-cells by crosstalk with another candidate gene, PTPN2, and activation of JNK1 and BIM. This clarifies an unexpected and relevant mechanism by which BACH2 may contribute to diabetes.

Categories: News Feeds

PGC1{alpha} Promoter Methylation in Blood at 5-7 Years Predicts Adiposity From 9 to 14 Years (EarlyBird 50)

Diabetes.org Current Issue - Tue, 06/24/2014 - 19:04

The early environment, acting via epigenetic processes, is associated with differential risk of cardiometabolic disease (CMD), which can be predicted by epigenetic marks in proxy tissues. However, such measurements at time points disparate from the health outcome or the environmental exposure may be confounded by intervening stochastic and environmental variation. To address this, we analyzed DNA methylation in the peroxisome proliferator–activated receptor coactivator 1α promoter in blood from 40 children (20 boys) collected annually between 5 and 14 years of age by pyrosequencing. Body composition was measured annually by dual X-ray absorptiometry, physical activity by accelerometry, and pubertal timing by age at peak high velocity. The effect of methylation on transcription factor binding was investigated by electrophoretic mobility shift assays. Seven cytosine guanine dinucleotide (CpG) loci were identified that showed no significant temporal change or association with leukocyte populations. Modeling using generalized estimating equations showed that methylation of four loci predicted adiposity up to 14 years independent of sex, age, pubertal timing, and activity. Methylation of one predictive locus modified binding of the proadipogenic pre–B-cell leukemia homeobox-1/homeobox 9 complex. These findings suggest that temporally stable CpG loci measured in childhood may have utility in predicting CMD risk.

Categories: News Feeds

A Type I Interferon Transcriptional Signature Precedes Autoimmunity in Children Genetically at Risk for Type 1 Diabetes

Diabetes.org Current Issue - Tue, 06/24/2014 - 19:04

Diagnosis of the autoimmune disease type 1 diabetes (T1D) is preceded by the appearance of circulating autoantibodies to pancreatic islets. However, almost nothing is known about events leading to this islet autoimmunity. Previous epidemiological and genetic data have associated viral infections and antiviral type I interferon (IFN) immune response genes with T1D. Here, we first used DNA microarray analysis to identify IFN-β–inducible genes in vitro and then used this set of genes to define an IFN-inducible transcriptional signature in peripheral blood mononuclear cells from a group of active systemic lupus erythematosus patients (n = 25). Using this predefined set of 225 IFN signature genes, we investigated the expression of the signature in cohorts of healthy controls (n = 87), patients with T1D (n = 64), and a large longitudinal birth cohort of children genetically predisposed to T1D (n = 109; 454 microarrayed samples). Expression of the IFN signature was increased in genetically predisposed children before the development of autoantibodies (P = 0.0012) but not in patients with established T1D. Upregulation of IFN-inducible genes was transient, temporally associated with a recent history of upper respiratory tract infections (P = 0.0064), and marked by increased expression of SIGLEC-1 (CD169), a lectin-like receptor expressed on CD14+ monocytes. DNA variation in IFN-inducible genes altered T1D risk (P = 0.007), as exemplified by IFIH1, one of the genes in our IFN signature for which increased expression is a known risk factor for disease. These findings identify transient increased expression of type I IFN genes in preclinical diabetes as a risk factor for autoimmunity in children with a genetic predisposition to T1D.

Categories: News Feeds

Multiple Nonglycemic Genomic Loci Are Newly Associated With Blood Level of Glycated Hemoglobin in East Asians

Diabetes.org Current Issue - Tue, 06/24/2014 - 19:04

Glycated hemoglobin A1c (HbA1c) is used as a measure of glycemic control and also as a diagnostic criterion for diabetes. To discover novel loci harboring common variants associated with HbA1c in East Asians, we conducted a meta-analysis of 13 genome-wide association studies (GWAS; N = 21,026). We replicated our findings in three additional studies comprising 11,576 individuals of East Asian ancestry. Ten variants showed associations that reached genome-wide significance in the discovery data set, of which nine (four novel variants at TMEM79 [P value = 1.3 x 10–23], HBS1L/MYB [8.5 x 10–15], MYO9B [9.0 x 10–12], and CYBA [1.1 x 10–8] as well as five variants at loci that had been previously identified [CDKAL1, G6PC2/ABCB11, GCK, ANK1, and FN3KI]) showed consistent evidence of association in replication data sets. These variants explained 1.76% of the variance in HbA1c. Several of these variants (TMEM79, HBS1L/MYB, CYBA, MYO9B, ANK1, and FN3K) showed no association with either blood glucose or type 2 diabetes. Among individuals with nondiabetic levels of fasting glucose (<7.0 mmol/L) but elevated HbA1c (≥6.5%), 36.1% had HbA1c <6.5% after adjustment for these six variants. Our East Asian GWAS meta-analysis has identified novel variants associated with HbA1c as well as demonstrated that the effects of known variants are largely transferable across ethnic groups. Variants affecting erythrocyte parameters rather than glucose metabolism may be relevant to the use of HbA1c for diagnosing diabetes in these populations.

Categories: News Feeds

Issues and Events

Diabetes.org Current Issue - Tue, 06/24/2014 - 19:04
Categories: News Feeds

In This Issue of Diabetes

Diabetes.org Current Issue - Tue, 06/24/2014 - 19:04
Categories: News Feeds

Glycemic Goals in Diabetes: Trade-off Between Glycemic Control and Iatrogenic Hypoglycemia

Diabetes.org Current Issue - Tue, 06/24/2014 - 19:04

The selection of a glycemic goal in a person with diabetes is a compromise between the documented upside of glycemic control—the partial prevention or delay of microvascular complications—and the documented downside of glycemic control—the recurrent morbidity and potential mortality of iatrogenic hypoglycemia. The latter is not an issue if glycemic control is accomplished with drugs that do not cause hypoglycemia or with substantial weight loss. However, hypoglycemia becomes an issue if glycemic control is accomplished with a sulfonylurea, a glinide, or insulin, particularly in the setting of absolute endogenous insulin deficiency with loss of the normal decrease in circulating insulin and increase in glucagon secretion and attenuation of the sympathoadrenal response as plasma glucose concentrations fall. Then the selection of a glycemic goal should be linked to the risk of hypoglycemia. A reasonable individualized glycemic goal is the lowest A1C that does not cause severe hypoglycemia and preserves awareness of hypoglycemia, preferably with little or no symptomatic or even asymptomatic hypoglycemia, at a given stage in the evolution of the individual’s diabetes.

Categories: News Feeds

Pleiotropic Mechanisms for the Glucose-Lowering Action of DPP-4 Inhibitors

Diabetes.org Current Issue - Tue, 06/24/2014 - 19:04

Dipeptidyl peptidase (DPP)-4 inhibition is a glucose-lowering treatment for type 2 diabetes. The classical mechanism for DPP-4 inhibitors is that they inhibit DPP-4 activity in peripheral plasma, which prevents the inactivation of the incretin hormone glucagon-like peptide (GLP)-1 in the peripheral circulation. This in turn increases circulating intact GLP-1, which results in stimulated insulin secretion and inhibited glucagon secretion, in turn increasing glucose utilization and diminishing hepatic glucose production, which, through reduction in postprandial and fasting glucose, reduces HbA1c. However, recent experimental studies in mainly rodents but also to a limited degree in humans have found additional mechanisms for DPP-4 inhibitors that may contribute to their glucose-lowering action. These nonclassical mechanisms include 1) inhibition of gut DPP-4 activity, which prevents inactivation of newly released GLP-1, which in turn augments GLP-1-induced activations of autonomic nerves and results in high portal GLP-1 levels, resulting in inhibited glucose production through portal GLP-1 receptors; 2) inhibition of islet DPP-4 activity, which prevents inactivation of locally produced intact GLP-1 in the islets, thereby augmenting insulin secretion and inhibiting glucagon secretion and possibly preventing islet inflammation; and 3) prevention of the inactivation of other bioactive peptides apart from GLP-1, such as glucose-dependent insulinotropic polypeptide, stromal-derived factor-1α, and pituitary adenylate cyclase-activating polypeptide, which may improve islet function. These pleiotropic effects may contribute to the effects of DPP-4 inhibition. This Perspectives in Diabetes outlines and discusses these nonclassical mechanisms of DPP-4 inhibition.

Categories: News Feeds